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ABSTRACT

This paper analyzes the existence of complex modes,
which have importtmt effects on the properties of planar
transmission line discontinuities, in electrically shielded
microstrip lines. A rigorous full—wave spectral domain
approach (SDA) with a newly proposed and tested set of
basis functions can efficiently and accurately determine the
complex modes of a class of general planar transmission
line problems if the complex modes exist. Under the case
studies of this paper, it shows that the complex modes may
exist in every shielded microstrip lines. Both convergence
study and the cross-sectional field patterns, which
guarantee the correct boundary conditions being satisfied,
confirm the validity of the solutions for complex modes.
Theoretical results for fundamental, higher order,
evanescent, and complex modes are presented for
symmetric coupled microstrip lines.

INTRODUCTION

The characterization of planar or quasi—planar
transmission line discontinuities plays an important role
for the computer–aided design (CAD) of millimeter–wave

pand microwave integrated circuits 1 . Without the
knowledge of the complex modes in an e ectrically shielded
enclosure, the analysis of a discontinuity problem might
lead to inaccurate results. Omar and Schunemann [2]
pointed out that the irregularity of the frequency response
of the normalized input reactance of a finline discontinuity
problem would exist if the complex modes associated with
the finline were ignored. So far two methods to obtain the
solutions of complex modes for microstrip and slotlines (or
finlines) are reported. The singular integral equation

i
techniques SIE) have been efficiently a plied to analyze

1symmetric reline [3] and microstrip [4 problems. The
other is based on the SDA [5].

Notice that W the reported solutions of the complex
modes are for symmetric transmission lines. The object ive
of this paper is to explore the possible existence of complex
modes in general planar and quasi–planar microstrip lines
based on the SDA.

We will briefly describe the basic features of the SDA
and list the set of basis functions employed in the SDA
with some explanations. Then, the theoretical results
covering various interesting aspects are reported as follows.
1) The first fifteen or sixteen modes and mode conversions
including fundamental, higher order, evanescent, and
complex modes are presented for even and odd mode
propagations of coupled microstrip lines.
2) The field patterns of the complex modes are
investigated. Besides the assurance of the boundary
conditions being satisfied, the physical implications are

discussed.
3) The convergence study for the solutions of complex
modes is performed.

Complex modes are found in suspended microstrip lines
of various forms, too. Thus it is plausible to conclude that
complex modes may exist in most shielded planar and
quasi–planar transmission lines. In practice, their
existences should not be overlooked since all the data
reported in the paper have shown that the third or the
fourth higher order modes may have already degenerated
into complex modes.

FORMULATION

SDectral Domain Atmroach (SDA)

The spectral domain approach has been widely accepted
for the analyses of numerous transmission lines regardless
of whether they are open or close structures [6]. When
analyzing stratified microstrip lines as shown in Fig. 1, the
SDA is even more attractive if the concept of the
immitance approach is invoked [7]. Conceptually the
immitance approach combines the network and field
theories and results in much more physical insight than
other techniques developed for microstrip and slotline
analyses. For the convention shown in Fig. 1, the SDA
starts with the Fourier transform defined as follows.

L
.m

f(x,y)of+m .dx := ;(Cl,y) Eq.(1)

By the immitance approach [7], the dyadic Green’s
function can be derived, i.e.,

Eq.(2)

,where ~ is the propagation constant.
After matching the final bound,~ry conditions imposed

on the metal-dielectric interface a nonst andard eigenvalue
problem can be formulated, namely,

det (GnXn(7)) := O Eq.(3)

- Z+jwt ftbctor is assumed. Thewhere ~a+j~, and e ?
roots of Eq. (3) are the propagation constants ( ~’s) for
propagating, higher order, evanescent, and complex modes.
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Preconditioned Basis Functions in SDA

Jansen [8] listed six criteria for obtaining the basis
functions used in SDA, namely, (1 edge condition, 2

) [1twice continuous different iabilit y, 3) completeness, 4
integral relationship between longitudinal and transverse
currents of the microstrip line, (5) ability to represent
nearly true modal current distributions, and (6) capability
of being Fourier transformed. The longitudinal and
transverse currents are derived according to the above
criteria, namely

2N
Jz(x) = Xi El a: jz~(x), and

j&2(~) = (1 * x); ‘1 Eq.(4)

where superscripts 1, 2 correspond to the edge conditions
in terms of normalized space coordinate at x=1 and —1,
respectively.

Many symmetric and asymmetric microstrip lines have
been investigated by employin this newly proposed set of

fbasis functions shown in Eqs. 4–5). No spurious solution
has been found. The modal longitudinal and transverse
currents reported in Fig. 5 and Fig. 6 of previous paper
[10] agree very well with current approach.

In addition, the point–matching technique has been
adopted into the SDA with the incorporation of Eq. (4)
and Eq. (5). It is clear from Table 1 that as N increases,
fewer number M of point–matching intervals [10] is
required for the solution of one of a pair of complex modes
to converge. The case of N=3 and M=4 results in a
solution for complex modes that would be obtained by
N= 1 and M=20. Likewise, the cases of N=3, M=20 and
N=?, M=4 have very close’solutions.

Since the accuracy of the modal solutions has been
established, the solutions reported hereafter use N=3,
M=O.

Table. 1 Convergence test for the solution of a
complex mode in a shielded symmetric micrw
strip line. Enclosure 12.7mm x 12.71mn, f=15
GHz, w=l.27mm, E,=20, lq=l.27mm.

Nt

1

3

5

7

M*

4

2:

4
s

20

4

2:

4
8

20

(ff,-cI)/Ko:

0.065 S40710,-1.0194247
0.0655S9305,-1.0195825
0.065551491 ,–1 .0196082 I

[
0.065552678,-1 .01960S9
0.065550246,-1.0196104
0065546229.–1.0196135!

[

0.0655500S7,-1.0196116
0.065546116,–1.0196154
0.065537774,-1.0196240 1

[

0.065544S46,-1.01961S1
0.065537462,–1.0196332
0.065521697,-1.0196442 I

t The order of SDA basis functions for analysis.
* The number of equally spaced intervals.
$ Normalized propagation constant ‘y/&.=( o+jfl)/k
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Fig. 1 Cross-sectional view of coupled microstrip lines
with stratified dielectric layers.

RESULTS

Fundamental, higher order, evanescent, and com~lex
modes in Reneral mi crest ri~ lines

The modal solutions shown in Fig. 2–(a) and Fig. 2–(b)
compare the results of the normalized propagation
constants obtained by SDA and those by SIE [4] for a
symmetric microstrip line, respectively. Only even mode
data are shown here. The fundamental mode is designated
as 1, first higher order mode 2, and so on. Reading from
the right hand side of the figures, the unprimed number is
the mode before conversion and the order of primed
number denotes the frequency of mode conversions. Both
figures agree generally except that mode 7 of Fig. 2–(a)
becomes evanescent quickly in the neighborhood of 22.5
GHz and modes 5 and 8 of Fig. 2–(b) were missed. Mode
10 of Fig. 2–(a) contributes to another complex modes
that were not reported previously. Before modes 4 and 6
degenerate into complex modes, a small backward wave
region exists as shown in Fig. 2–(a). Modes 8 and 9 also
split into complex modes. Immediately aft er modes 8‘ and
9’ lead into evanescent modes, mode 9’ and mode 1(I form
another complex modes. The validity of every mode
reported in Fig. 2—(a) has been checked by cross—sectional
electric and magnetic field patterns to ensure that the
correct physital solution has been found. One of the
advantages of using the modified SDA is the fact that the
odd mode propagation constants can be obtained
simultaneously. Fig. 2–(c) illustrates the results for odd
mode propagation. There is no limitation of the approach
to analyze the asymmetric microst rip lines.

Fig. 3–(a) and Fig. 3–(b) are modal solutions for odd
mode and even mode propagations of coupled microstrip
lines, respectively. The distributions of complex modes are
more complicated than data shown in Fig. 2—(a) or Fig.

2–(b) of a symmetric microstrip line. Many mode
conversions occur in these figures. In Fig. s–(a), for
instance, modes 10 and 13 and modes 7 and 11 degenerate
into complex modes. These complex waves convert to
evanescent modes designated as 10’, 13’, 7’, and 11’. Again
modes 10’ and 13! degenerate into complex modes and are
back to evanescent modes 10” and 13”. Modes 10” and 12
and modes 13” and 7’ degenerate into complex modes.
They are finally back to evanescent modes designated as
10’”, 12’, 13’”, and 7“.
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Similarly Fig. 3–(b) indicates the fact that many
regions consisting of complex modes and mode conversions
occur frequently.

Field Datterns for com~lex modes

For the situation that modal solution is either real
(evanescent) or imaginary (propagating), the field patterns
of this case are polarized in linear sense. The complex
modes, on the other hand, are polarized in elliptical sense
since the field amplitudes are complex in nature. Fig.
4–(a), (b), (c) and (d) are the plots of odd–symmetric
electric field patterns of one of the complex modes at
different locations along z–axis, i.e. z=O, 2r/4/3, 2x2rr/4/3
and 3x2 r/4,0, when the electric field patterns are observed
instantly at t=O. Only part (one fifth) of the field patterns
from bottom enclosure are plotted for better illustrations
for field near metallic strips. Each plot represents the
relative amplitude nomalized to itself. The transverse
electric displacement vector Dt= crEt is much stronger

underneath the dielectric–air interface. The field
distribution is HE61 type. The influence of side walls and

bottom enclosure on the field patterns is clear. The field
patterns are denser in the regions other than metallic
strips.

CONCLUSION

The existences of complex modes together with
backward waves are shown to exist in both symmetric
microstrip line and coupled microst rip lines. Mode charts
of the propagation constant as a function of frequency
illustrate the fact that complex modes may exist over most
frequency spectrum of interest. In addition, the third or
fourth higher order modes may start to degenerate into
complex modes for all the case studies presented. Not
being reported in the paper, the suspended symmetric and
asymmetric microstrip lines also have complex modes.
Therefore it is important not to ignore the existence of
complex modes associated with most planar microstrip
lines incorporated in MMIC or hybrid MIC designs.
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Fig.2 Normalized propagation constant ~= a+j/3 versus
frequency. (a) The improved SDA :solutions for even mode
propagations. (b) The SIE SOIUtions for even mode
propagations. (c) The improved SDA solutions for odd
mode propagations.2a= 12.7mm,s=(l, 2w=hl+h2=l .27mm,

cr1=cr2=20, 6r3==l, d+hl+h2= 12.7mm.
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Flg.4 Odd mode electric field patterns for one of the
complex modes of the coupled microstrip lines. f=15GHz.
~ = a+jJ’ = 0.883976 + jO.048256. d=O. (a) /31=0,
(b) /31?=?r/2, (C) @=r, (d) @=3m/2.

Normalized propagation constant ~/fro=
(a;~~j~~o of coupled microstrip lines versus frequency.
The dimensions of the coupled microstrip lines are shown
in Fig. 1. (a) The odd mode propagation. (b) The even
mode propagation. Parameters: 2a=25.4mm, s=l.27mm,
w=l.27m, d+hl+h2=12.7mm, hl+h2=l.27mm,
cr1=er2=20, Er3=l.
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